A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench (57)Fe Mössbauer Data, and a Hydride Resting State.

نویسندگان

  • Trevor J Del Castillo
  • Niklas B Thompson
  • Jonas C Peters
چکیده

The mechanisms of the few known molecular nitrogen-fixing systems, including nitrogenase enzymes, are of much interest but are not fully understood. We recently reported that Fe-N2 complexes of tetradentate P3(E) ligands (E = B, C) generate catalytic yields of NH3 under an atmosphere of N2 with acid and reductant at low temperatures. Here we show that these Fe catalysts are unexpectedly robust and retain activity after multiple reloadings. Nearly an order of magnitude improvement in yield of NH3 for each Fe catalyst has been realized (up to 64 equiv of NH3 produced per Fe for P3(B) and up to 47 equiv for P3(C)) by increasing acid/reductant loading with highly purified acid. Cyclic voltammetry shows the apparent onset of catalysis at the P3(B)Fe-N2/P3(B)Fe-N2(-) couple and controlled-potential electrolysis of P3(B)Fe(+) at -45 °C demonstrates that electrolytic N2 reduction to NH3 is feasible. Kinetic studies reveal first-order rate dependence on Fe catalyst concentration (P3(B)), consistent with a single-site catalyst model. An isostructural system (P3(Si)) is shown to be appreciably more selective for hydrogen evolution. In situ freeze-quench Mössbauer spectroscopy during turnover reveals an iron-borohydrido-hydride complex as a likely resting state of the P3(B)Fe catalyst system. We postulate that hydrogen-evolving reaction activity may prevent iron hydride formation from poisoning the P3(B)Fe system. This idea may be important to consider in the design of synthetic nitrogenases and may also have broader significance given that intermediate metal hydrides and hydrogen evolution may play a key role in biological nitrogen fixation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Confirmation of the Quench-Cryoannealing Relaxation Protocol for Identifying Reduction States of Freeze-Trapped Nitrogenase Intermediates

We have advanced a mechanism for nitrogenase catalysis that rests on the identification of a low-spin EPR signal (S = 1/2) trapped during turnover of a MoFe protein as the E4 state, which has accumulated four reducing equivalents as two [Fe-H-Fe] bridging hydrides. Because electrons are delivered to the MoFe protein one at a time, with the rate-limiting step being the off-rate of oxidized Fe pr...

متن کامل

Catalytic N2-to-NH3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET

We have recently reported on several Fe catalysts for N2-to-NH3 conversion that operate at low temperature (-78 °C) and atmospheric pressure while relying on a very strong reductant (KC8) and acid ([H(OEt2)2][BArF4]). Here we show that our original catalyst system, P3BFe, achieves both significantly improved efficiency for NH3 formation (up to 72% for e- delivery) and a comparatively high turno...

متن کامل

A 10‐Fold Enhancement in N2‐Binding Affinity of an Fe2(μ-H)2 Core upon Reduction to a Mixed-Valence FeFe State

Transient hydride ligands bridging two or more iron centers purportedly accumulate on the iron−molybdenum cofactor (FeMoco) of nitrogenase, and their role in the reduction of N2 to NH3 is unknown. One role of these ligands may be to facilitate N2 coordination at an iron site of FeMoco. Herein, we consider this hypothesis and describe the preparation of a series of diiron complexes supported by ...

متن کامل

Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein?

We here report the first direct evidence addressing the possible involvement of Mo in substrate interactions during catalytic turnover. When the alpha-70(Ile) MoFe protein is freeze-trapped during H(+) reduction under Ar, the majority of the resting state EPR signal from the molybdenum-iron cofactor (FeMo-co) disappears and is replaced by the S = 1/2 signal of an intermediate that has been show...

متن کامل

A 106-Fold Enhancement in N2-Binding Affinity of an Fe2(μ-H)2 Core upon Reduction to a Mixed-Valence FeIIFeI State

Transient hydride ligands bridging two or more iron centers purportedly accumulate on the iron-molybdenum cofactor (FeMoco) of nitrogenase, and their role in the reduction of N2 to NH3 is unknown. One role of these ligands may be to facilitate N2 coordination at an iron site of FeMoco. Herein, we consider this hypothesis and describe the preparation of a series of diiron complexes supported by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 138 16  شماره 

صفحات  -

تاریخ انتشار 2016